Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
PLoS Pathog ; 19(6): e1011434, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20237504

ABSTRACT

Hepatitis E virus (HEV) is one of the main pathogenic agents of acute hepatitis in the world. The mechanism of HEV replication, especially host factors governing HEV replication is still not clear. Here, using HEV ORF1 trans-complementation cell culture system and HEV replicon system, combining with stable isotope labelling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we aimed to identify the host factors regulating HEV replication. We identified a diversity of host factors associated with HEV ORF1 protein, which were putatively responsible for viral genomic RNA replication, in these two cell culture models. Of note, the protein arginine methyltransferase 5 (PRMT5)/WDR77 complex was identified in both cell culture models as the top hit. Furthermore, we demonstrated that PRMT5 and WDR77 can specifically inhibit HEV replication, but not other viruses such as HCV or SARS-CoV-2, and this inhibition is conserved among different HEV strains and genotypes. Mechanistically, PRMT5/WDR77 can catalyse methylation of ORF1 on its R458, impairing its replicase activity, and virus bearing R458K mutation in ORF1 relieves the restriction of PRMT5/WDR77 accordingly. Taken together, our study promotes more comprehensive understanding of viral infections but also provides therapeutic targets for intervention.


Subject(s)
COVID-19 , Hepatitis E virus , Hepatitis E , Humans , Hepatitis E virus/genetics , SARS-CoV-2 , Virus Replication/physiology , Protein-Arginine N-Methyltransferases/genetics
2.
Cell Discov ; 9(1): 43, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2306022

ABSTRACT

Animal models play crucial roles in the rapid development of vaccines/drugs for the prevention and therapy of COVID-19, but current models have some deficits when studying the pathogenesis of SARS-CoV-2 on some special tissues or organs. Here, we generated a human ACE2 and SARS-CoV-2 NF/F knockin mouse line that constitutively expresses human ACE2 and specifically expresses SARS-CoV-2 N gene induced by Cre-recombinase. By crossing with Cre transgenic lines allowing for lung-specific and constitutive expression, we generated lung-specific (Sftpc-hACE2-NF/F) and constitutive SARS-CoV-2 N (EIIa-hACE2-NF/F) expressing mice. Upon intranasal infection with a SARS-CoV-2 GFP/ΔN strain which can only replicate in SARS-CoV-2 N expressed cells, we demonstrated that both the Sftpc-hACE2-NF/F and EIIa-hACE2-NF/F mice support viral replication. Consistent with our design, viral replication was limited to the lung tissues in Sftpc-hACE2-NF/F mice, while the EIIa-hACE2-NF/F mice developed infections in multiple tissues. Furthermore, our model supports different SARS-CoV-2 variants infection, and it can be successfully used to evaluate the effects of therapeutic monoclonal antibodies (Ab1F11) and antiviral drugs (Molnupiravir). Finally, to test the effect of SARS-CoV-2 infection on male reproduction, we generated Sertoli cell-specific SARS-CoV-2 N expressed mice by crossing with AMH-Cre transgenic line. We found that SARS-CoV-2 GFP/ΔN strain could infect Sertoli cells, led to spermatogenic defects due to the destruction of blood-testis barrier. Overall, combining with different tissue-specific Cre transgenic lines, the human ACE2 and SARS-CoV-2 NF/F line enables us to evaluate antivirals in vivo and study the pathogenesis of SARS-CoV-2 on some special tissues or organs.

3.
Antiviral Res ; 212: 105571, 2023 04.
Article in English | MEDLINE | ID: covidwho-2263398

ABSTRACT

Development of potent and broad-spectrum antivirals against SARS-CoV-2 remains one of top priorities, especially in the case of that current vaccines cannot effectively prevent viral transmission. We previously generated a group of fusion-inhibitory lipopeptides, with one formulation being evaluated under clinical trials. In this study, we dedicated to characterize the extended N-terminal motif (residues 1161-1168) of the so-called spike (S) heptad repeat 2 (HR2) region. Alanine scanning analysis of this motif verified its critical roles in S protein-mediated cell-cell fusion. Using a panel of HR2 peptides with the N-terminal extensions, we identified a peptide termed P40, which contained four extended N-terminal residues (VDLG) and exhibited improved binding and antiviral activities, whereas the peptides with further extensions had no such effects. Then, we developed a new lipopeptide P40-LP by modifying P40 with cholesterol, which exhibited dramatically increased activities in inhibiting SARS-CoV-2 variants including divergent Omicron sublineages. Moreover, P40-LP displayed a synergistic effect with IPB24 lipopeptide that was designed containing the C-terminally extended residues, and it could effectively inhibit other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Taken together, our results have provided valuable insights for understanding the structure-function relationship of SARS-CoV-2 fusion protein and offered novel antiviral strategies to fight against the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Lipopeptides/pharmacology , Anti-Retroviral Agents
4.
mBio ; 13(3): e0130022, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1874506

ABSTRACT

Ubiquitin signaling is essential for immunity to restrict pathogen proliferation. Due to its enormous impact on human health and the global economy, intensive efforts have been invested in studying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its interactions with hosts. However, the role of the ubiquitin network in pathogenicity has not yet been explored. Here, we found that ORF9b of SARS-CoV-2 is ubiquitinated on Lys-4 and Lys-40 by unknown E3 ubiquitin ligases and is degraded by the ubiquitin proteasomal system. Importantly, we identified USP29 as a host factor that prevents ORF9b ubiquitination and subsequent degradation. USP29 interacts with the carboxyl end of ORF9b and removes ubiquitin chains from the protein, thereby inhibiting type I interferon (IFN) induction and NF-κB activation. We also found that ORF9b stabilization by USP29 enhanced the virulence of VSV-eGFP and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). Moreover, we observed that the mRNA level of USP29 in SARS-CoV-2 patients was higher than that in healthy people. Our findings provide important evidence indicating that targeting USP29 may effectively combat SARS-CoV-2 infection. IMPORTANCE Coronavirus disease 2019 (COVID-19) is a current global health threat caused by SARS-CoV-2. The innate immune response such as type I IFN (IFN-I) is the first line of host defense against viral infections, whereas SARS-CoV-2 proteins antagonize IFN-I production through distinct mechanisms. Among them, ORF9b inhibits the canonical IκB kinase alpha (IKKɑ)/ß/γ-NF-κB signaling and subsequent IFN production; therefore, discovering the regulation of ORF9b by the host might help develop a novel antiviral strategy. Posttranslational modification of proteins by ubiquitination regulates many biological processes, including viral infections. Here, we report that ORF9b is ubiquitinated and degraded through the proteasome pathway, whereas deubiquitinase USP29 deubiquitinates ORF9b and prevents its degradation, resulting in the enhancement of ORF9b-mediated inhibition of IFN-I and NF-κB activation and the enhancement of virulence of VSV-eGFP and SARS-CoV-2 trVLP.


Subject(s)
Biological Phenomena , COVID-19 , Coronavirus Nucleocapsid Proteins/metabolism , Deubiquitinating Enzymes , Humans , Immunity, Innate , NF-kappa B , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex , SARS-CoV-2/genetics , Ubiquitin-Specific Proteases , Ubiquitins , Virulence
5.
iScience ; 25(4): 104136, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1851358

ABSTRACT

The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to public health. Human breast milk is a complex nutritional composition to nourish infants and protect them from different kinds of infectious diseases including COVID-19. Here, we identified that lactoferrin (LF), mucin1 (MUC1), and α-lactalbumin (α-LA) from human breast milk inhibit SARS-CoV-2 infection using a SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). In addition, LF and MUC1 inhibited multiple steps including viral attachment, entry, and postentry replication, whereas α-LA inhibited viral attachment and entry. Importantly, LF, MUC1, and α-LA possess potent antiviral activities toward variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.1 (kappa). Taken together, our study provides evidence that human breast milk components (LF, MUC1, and α-LA) are promising antiviral and potential therapeutic candidates warranting further development for treating COVID-19.

6.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1755857

ABSTRACT

The global pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection confers great threat to the public health. Human breastmilk is a complex with nutritional composition to nourish infants and protect them from different kinds of infectious diseases including COVID-19. Here, we identified lactoferrin (LF), mucin1 (MUC1) and α-lactalbumin (α-LA) from human breastmilk inhibit SARS-CoV-2 infection using a SARS-CoV-2 pseudovirus system and transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). Additionally, LF and MUC1 inhibited multiple steps including viral attachment, entry and post-entry replication, while α-LA inhibited viral attachment and entry. Importantly, LF, MUC1 and α-LA possessed potent antiviral activities towards variants such as B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and B.1.617.1 (kappa). Taken together, our study provides evidence that human breastmilk components (LF, MUC1 and α-LA) are promising antiviral and potential therapeutic candidates warranting further development or treating COVID-19. Graphical

7.
mBio ; 13(2): e0009922, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1736029

ABSTRACT

Recently, highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. The spike protein of Kappa contains the four mutations E154K, L452R, E484Q, and P681R, and Delta contains L452R, T478K, and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta, or B.1.618 spike uses human angiotensin-converting enzyme 2 (ACE2) with no or slightly increased efficiency, while it gains a significantly increased binding affinity with mouse, marmoset, and koala ACE2 orthologs, which exhibit limited binding with wild-type (WT) spike. Furthermore, the P681R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta, and B.1.618 exhibit a reduced sensitivity to neutralization by convalescent-phase sera due to the mutation E484Q, T478K, Δ145-146, or E484K, but remain sensitive to entry inhibitors such as ACE2-Ig decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage, and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants. Furthermore, our results also highlight that ACE2-Ig could be developed as a broad-spectrum antiviral strategy against SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2, the causative agent of pandemic COVID-19, is rapidly evolving to be more transmissible and to exhibit evasive immune properties, compromising neutralization by antibodies from vaccinated individuals or convalescent-phase sera. Recently, SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 with mutations within the spike proteins were identified in India. In this study, we examined cell entry efficiencies of Kappa, Delta, and B.1.618. In addition, the variants, especially the Delta variant, exhibited expanded capabilities to use mouse, marmoset, and koala ACE2 for entry. Convalescent sera from patients infected with nonvariants showed reduced neutralization titers among the Kappa, Delta, and B.1.618 variants. Furthermore, the variants remain sensitive to ACE2-Ig decoy receptor. Our study thus could facilitate understanding how variants have increased transmissibility and evasion of established immunity and also could highlight the use of an ACE2 decoy receptor as a broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents , COVID-19/therapy , Humans , Immune Evasion , Immunization, Passive , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , COVID-19 Serotherapy
9.
Bio Protoc ; 11(21): e4257, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1527089

ABSTRACT

The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As this virus is classified as a biosafety level-3 (BSL-3) agent, the development of countermeasures and basic research methods is logistically difficult. Recently, using reverse genetics, we developed a BSL-2 cell culture system for production of transcription- and replication-component virus-like-particles (trVLPs) by genetic transcomplementation. The system consists of two parts: SARS-CoV-2 GFP/ΔN genomic RNA, in which the nucleocapsid (N) gene, a critical gene for virion packaging, is replaced by a GFP reporter gene; and a packaging cell line for ectopic expression of N (Caco-2-N). The complete viral life cycle can be recapitulated and confined to Caco-2-N cells, with GFP positivity serving as a surrogate readout for viral infection. In addition, we utilized an intein-mediated protein splicing technique to split the N gene into two independent vectors and generated the Caco-2-Nintein cells as a packaging cell line to further enhance the security of this cell culture model. Altogether, this system provides for a safe and convenient method to produce trVLPs in BSL-2 laboratories. These trVLPs can be modified to incorporate desired mutations, permitting high-throughput screening of antiviral compounds and evaluation of neutralizing antibodies. This protocol describes the details of the trVLP cell culture model to make SARS-CoV-2 research more readily accessible.

10.
PLoS Pathog ; 17(11): e1010053, 2021 11.
Article in English | MEDLINE | ID: covidwho-1506691

ABSTRACT

COVID-19 patients transmitted SARS-CoV-2 to minks in the Netherlands in April 2020. Subsequently, the mink-associated virus (miSARS-CoV-2) spilled back over into humans. Genetic sequences of the miSARS-CoV-2 identified a new genetic variant known as "Cluster 5" that contained mutations in the spike protein. However, the functional properties of these "Cluster 5" mutations have not been well established. In this study, we found that the Y453F mutation located in the RBD domain of miSARS-CoV-2 is an adaptive mutation that enhances binding to mink ACE2 and other orthologs of Mustela species without compromising, and even enhancing, its ability to utilize human ACE2 as a receptor for entry. Structural analysis suggested that despite the similarity in the overall binding mode of SARS-CoV-2 RBD to human and mink ACE2, Y34 of mink ACE2 was better suited to interact with a Phe rather than a Tyr at position 453 of the viral RBD due to less steric clash and tighter hydrophobic-driven interaction. Additionally, the Y453F spike exhibited resistance to convalescent serum, posing a risk for vaccine development. Thus, our study suggests that since the initial transmission from humans, SARS-CoV-2 evolved to adapt to the mink host, leading to widespread circulation among minks while still retaining its ability to efficiently utilize human ACE2 for entry, thus allowing for transmission of the miSARS-CoV-2 back into humans. These findings underscore the importance of active surveillance of SARS-CoV-2 evolution in Mustela species and other susceptible hosts in order to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , Host Adaptation , Mink/immunology , Mutation , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites , COVID-19/immunology , COVID-19/therapy , COVID-19/transmission , COVID-19/virology , Female , Humans , Immunization, Passive/statistics & numerical data , Male , Middle Aged , Mink/virology , Molecular Dynamics Simulation , Netherlands/epidemiology , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Young Adult , COVID-19 Serotherapy
11.
Cell Res ; 32(1): 9-23, 2022 01.
Article in English | MEDLINE | ID: covidwho-1505077

ABSTRACT

In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.


Subject(s)
COVID-19 , RNA Viruses , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents , Humans , Mice , RNA, Viral , SARS-CoV-2 , Viral Proteins
13.
Cell Rep ; 36(5): 109482, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1312984

ABSTRACT

Bearing a relatively large single-stranded RNA genome in nature, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes sophisticated replication/transcription complexes (RTCs), mainly composed of a network of nonstructural proteins and nucleocapsid protein, to establish efficient infection. In this study, we develop an innovative interaction screening strategy based on phase separation in cellulo, namely compartmentalization of protein-protein interactions in cells (CoPIC). Utilizing CoPIC screening, we map the interaction network among RTC-related viral proteins. We identify a total of 47 binary interactions among 14 proteins governing replication, discontinuous transcription, and translation of coronaviruses. Further exploration via CoPIC leads to the discovery of extensive ternary complexes composed of these components, which infer potential higher-order complexes. Taken together, our results present an efficient and robust interaction screening strategy, and they indicate the existence of a complex interaction network among RTC-related factors, thus opening up opportunities to understand SARS-CoV-2 biology and develop therapeutic interventions for COVID-19.


Subject(s)
COVID-19/virology , Protein Interaction Mapping/methods , Proteome , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/physiology , Animals , Caco-2 Cells , Cell Compartmentation , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Protein Interaction Maps , Vero Cells , Virus Replication
14.
PLoS Pathog ; 17(3): e1009439, 2021 03.
Article in English | MEDLINE | ID: covidwho-1133695

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.


Subject(s)
COVID-19/virology , Cell Culture Techniques/methods , SARS-CoV-2/physiology , Antiviral Agents/pharmacology , Containment of Biohazards , Genome, Viral/drug effects , High-Throughput Screening Assays , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Virus Replication/drug effects
15.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1117490

ABSTRACT

The pandemic of COVID-19, caused by SARS-CoV-2, is a major global health threat. Epidemiological studies suggest that bats (Rhinolophus affinis) are the natural zoonotic reservoir for SARS-CoV-2. However, the host range of SARS-CoV-2 and intermediate hosts that facilitate its transmission to humans remain unknown. The interaction of coronavirus with its host receptor is a key genetic determinant of host range and cross-species transmission. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as the receptor to enter host cells in a species-dependent manner. In this study, we characterized the ability of ACE2 from diverse species to support viral entry. By analyzing the conservation of five residues in two virus-binding hotspots of ACE2 (hotspot 31Lys and hotspot 353Lys), we predicted 80 ACE2 proteins from mammals that could potentially mediate SARS-CoV-2 entry. We chose 48 ACE2 orthologs among them for functional analysis, and showed that 44 of these orthologs-including domestic animals, pets, livestock, and animals commonly found in zoos and aquaria-could bind the SARS-CoV-2 spike protein and support viral entry. In contrast, New World monkey ACE2 orthologs could not bind the SARS-CoV-2 spike protein and support viral entry. We further identified the genetic determinant of New World monkey ACE2 that restricts viral entry using genetic and functional analyses. These findings highlight a potentially broad host tropism of SARS-CoV-2 and suggest that SARS-CoV-2 might be distributed much more widely than previously recognized, underscoring the necessity to monitor susceptible hosts to prevent future outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/veterinary , Receptors, Virus/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Host Specificity , Humans , Pandemics/prevention & control , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Viral Zoonoses/genetics , Viral Zoonoses/prevention & control , Viral Zoonoses/virology , Virus Attachment , Virus Internalization
16.
Cell ; 184(7): 1865-1883.e20, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1071139

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding of the RNA virus and its interactions with host proteins could improve therapeutic interventions for COVID-19. By using icSHAPE, we determined the structural landscape of SARS-CoV-2 RNA in infected human cells and from refolded RNAs, as well as the regulatory untranslated regions of SARS-CoV-2 and six other coronaviruses. We validated several structural elements predicted in silico and discovered structural features that affect the translation and abundance of subgenomic viral RNAs in cells. The structural data informed a deep-learning tool to predict 42 host proteins that bind to SARS-CoV-2 RNA. Strikingly, antisense oligonucleotides targeting the structural elements and FDA-approved drugs inhibiting the SARS-CoV-2 RNA binding proteins dramatically reduced SARS-CoV-2 infection in cells derived from human liver and lung tumors. Our findings thus shed light on coronavirus and reveal multiple candidate therapeutics for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , RNA, Viral , RNA-Binding Proteins/antagonists & inhibitors , SARS-CoV-2 , Animals , Cell Line , Chlorocebus aethiops , Deep Learning , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
17.
Sci Bull (Beijing) ; 66(12): 1194-1204, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1036222

ABSTRACT

A key to tackling the coronavirus disease 2019 (COVID-19) pandemic is to understand how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manages to outsmart host antiviral defense mechanisms. Stress granules (SGs), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. Here, we show that the SARS-CoV-2 nucleocapsid (N) protein, an RNA binding protein essential for viral production, interacted with Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) and disrupted SG assembly, both of which require intrinsically disordered region1 (IDR1) in N protein. The N protein partitioned into SGs through liquid-liquid phase separation with G3BP, and blocked the interaction of G3BP1 with other SG-related proteins. Moreover, the N protein domains important for phase separation with G3BP and SG disassembly were required for SARS-CoV-2 viral production. We propose that N protein-mediated SG disassembly is crucial for SARS-CoV-2 production.

SELECTION OF CITATIONS
SEARCH DETAIL